Artificial Intelligence in Oncology - Supporting scientific research
Erasmus MC
In short, Stefan Klein's research entails the following:
'Soft tissue tumors (STT) are a rare and complex group of lesions with a broad range of differentiation. All STT subtypes greatly differ in their clinical behavior, aggressiveness, molecular background, and preferred treatments given. Diagnosis of the correct phenotype, the grade of aggressiveness, and molecular make-up is therefore of utmost importance. Diagnosis of STT is generally supported by imaging, such as computed tomography (CT) and magnetic resonance imaging (MRI). However, visual assessment by a radiologist tends to be subjective and not precise. Quantitative, computational (“radiomics”) imaging features and state-of-the-art Artificial Intelligence (AI) techniques based on machine learning could enable more objective and precise STT diagnosis. With the support of the Hanarth Foundation, we aim to develop a comprehensive STT diagnostic model, both for phenotyping and grading. This model will be trained and validated in a large, multi-center cohort, and evaluated in a clinical setting. The model will be based on quantitative image analysis by radiomics and deep learning. We hypothesize that, by considering multiple STT phenotypes at once instead of training a specialized model for each subtype, breakthroughs will be achieved with regard to the diagnostic performance of the AI model and its generalizability. Our AI model will guide diagnosis and treatment decisions, thereby facilitating personalized medicine.'